Linear interpolation for spatial data grid by newton polynomials
نویسندگان
چکیده
منابع مشابه
Attenuation of spatial aliasing in CMP domain by non-linear interpolation of seismic data along local slopes
Spatial aliasing is an unwanted side effect that produces artifacts during seismic data processing, imaging and interpolation. It is often caused by insufficient spatial sampling of seismic data and often happens in CMP (Common Mid-Point) gather. To tackle this artifact, several techniques have been developed in time-space domain as well as frequency domain such as frequency-wavenumber, frequen...
متن کاملNumerical Solution of Fuzzy Polynomials by Newton-Raphson Method
The main purpose of this paper is to find fuzzy root of fuzzy polynomials (if exists) by using Newton-Raphson method. The proposed numerical method has capability to solve fuzzy polynomials as well as algebric ones. For this purpose, by using parametric form of fuzzy coefficients of fuzzy polynomial and Newton-Rphson method we can find its fuzzy roots. Finally, we illustrate our approach by nu...
متن کاملStability Results for Scattered Data Interpolation by Trigonometric Polynomials
A fast and reliable algorithm for the optimal interpolation of scattered data on the torus Td by multivariate trigonometric polynomials is presented. The algorithm is based on a variant of the conjugate gradient method in combination with the fast Fourier transforms for nonequispaced nodes. The main result is that under mild assumptions the total complexity for solving the interpolation problem...
متن کاملSpatial Interpolation Using Copula for non-Gaussian Modeling of Rainfall Data
‎One of the most useful tools for handling multivariate distributions of dependent variables in terms of their marginal distribution is a copula function‎. ‎The copula families capture a fair amount of attention due to their applicability and flexibility in describing the non-Gaussian spatial dependent data‎. ‎The particular properties of the spatial copula are rarely ...
متن کاملScattered data approximation of fully fuzzy data by quasi-interpolation
Fuzzy quasi-interpolations help to reduce the complexity of solving a linear system of equations compared with fuzzy interpolations. Almost all fuzzy quasi-interpolations are focused on the form of $widetilde{f}^{*}:mathbb{R}rightarrow F(mathbb{R})$ or $widetilde{f}^{*}:F(mathbb{R})rightarrow mathbb{R}$. In this paper, we intend to offer a novel fuzzy radial basis function by the concept of so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics and Computer Science
سال: 2016
ISSN: 2008-949X
DOI: 10.22436/jmcs.016.03.12